Đối xứng gương (lý thuyết dây)

Trong hình học đại sốvật lý lý thuyết, đối xứng gương là một mối quan hệ giữa các vật thể hình học được gọi là những đa tạp Calabi-Yau. Các đa tạp này có thể trông rất khác nhau về mặt hình học nhưng được xem là tương đương nhau nếu chúng được dùng như những chiều thêm vào của lý thuyết dây. Trong trường hợp này, chúng được gọi là các đa tạp gương.

Đối xứng gương ban đầu được phát hiện bởi các nhà vật lý. Giới toán học chỉ quan tâm tới mối quan hệ này từ khoảng năm 1990 khi nhóm nghiên cứu của Philip Candelas chỉ ra rằng có thể dùng nó làm một công cụ trong hình học liệt kê, một nhánh toán học liên quan tới việc đếm số nghiệm của các câu hỏi hình học. Theo Candelas, đối xứng gương có thể dùng để đếm các đường cong tỉ lệ trên một đa diện Calabi-Yau, do đó giải quyết một bài toán tồn tại từ lâu trong lĩnh vực nà. Mặt dù cách tiếp cận ban đầu với đối xứng gương dựa trên các ý tưởng vật lý không thực sự nghiêm ngặt về mặt toán học, vài tiên đoán toán học của nó đã được chứng minh là chính xác chặt chẽ.

Ngày nay đối xứng gương là một đề tài nghiên cứu quan trọng trong toán học thuần túy, và các nhà toán học đang phát triển hiểu biết toán học về mối quan hệ này dựa trên trực giác của các nhà vật lý. Đối xứng gương cũng là một công cụ cơ bản để tính toán trong lý thuyết dây, và nó được dùng để nắm bắt các khía cạnh của lý thuyết trường lượng tử, hình thức luận mà các nhà vật lý dùng đẻ mô tả các hạt cơ bản. Các cách tiếp cận chính về đối xứng gương bao gồm chương trình đối xứng gương tương đồng của Maxim KontsevichGiả định SYZ của Andrew Strominger, Shing-Tung Yau, và Eric Zaslow.

Tổng quan

Dây và compact hóa

Bài chi tiết: Lý thuyết dây
Cái đối tượng cơ bản của lý thuyết dây là các dây mở và đóng.

Trong vật lý, lý thuyết dây là một khuôn khổ lý thuyết trong đó hạt tựa điểm được thay thế bằng các đối tượng một chiều được gọi là dây. Những dây này trông giống những đoạn hoặc vòng dây nhỏ thông thường. Lý thuyết dây mô tả cách thức các dây lan truyền trong không gian và tương tác với nhau. Ở khoảng cách kích thước lớn hơn kích thước dây, một dây trông giống hệt như một hạt thông thường, cũng có khối lượng, điện tích và các thuộc tính khác quy định bởi trạng thái dao động của của dây. Sự chia cắt và tái hợp dây tương ứng với sự phát xạ và hấp thụ hạt, gây ra tương tác giữa các hạt/dây.[1]

Giữa thế giới mô tả bởi lý thuyết dây và thế giới hàng ngày có những khác biệt đáng chú ý. Trong thế giới hàng ngày, có ba chiều không gian quen thuộc (trên/dưới, trái/phải, đăng trước/sau) và một chiều thời gian (trước/sau). Do đó, theo ngôn ngữ của vật lý hiện đại, ta nói rằng không-thời gian có 4 chiều.[2] Một trong những đặc điểm kì lạ của lý thuyết dây là nó cần thêm các chiều phụ của không thời gian để đảm bảo tính nhất quán toán học. Trong lý thuyết siêu dây, phiên bản của lý thuyết dây tích hợp ý tưởng lý thuyết về siêu đối xứngư, có thêm 6 chiều phụ của không thời gian cộng với 4 chiều quen thuộc với tri giác thông thường.[3]

Một trong những mục đích của nghiên cứu lý thuyết dây hiện nay là phát triển các mô hình trong đó các dây biểu hiện những hạt quan sát được trong các thí nghiệm năng lượng cao. Để một mô hình như thế nhất quán với quan sát, không thời gian của nó phải mang 4 chiều trong những kích thước khoảng cách liên quan, nghĩa là người ta phải tìm cách hạn chế những chiều phụ của nó tỏng những kích thước nhỏ hơn. Trong những mô hình vật lý có vẻ hiện thực nhất dựa trên lý thuyết dây, ddieuf này được thực hiện bởi một quá trình gọi là compact hóa (tiếng Anh:compactification) trong đó các chiều phụ được giả thiết là sẽ xích lại gần nhâu để tạo nên các đường tròn.[4] Trong giới hạn mà các chiều cuộn lại trở nên rất nhỏ, người ta thu được một lý thuyết trong đó không-thời gian thành ra có số chiều ít hơn. Một sự tương đồng tiêu chuẩn với nó là hãy xét một vật thể đa chiều như một cái vòi phun nước trong vườn. Nếu cái vòi được nhìn tử khoảng cách đủ xa, nó trong như thể chỉ có một chiều, tức chiều dài của nó. Tuy nhiên, khi tiến lại gần, người ta thấy rằng nó có một chiều thứ hai, đường kính của nó. Do đó, một con kiến bò trên bề mặt của vòi sẽ di chuyển trong hai chiều.[5]

Đa tạp Calabi-Yau

Bài chi tiết: Calabi–Yau manifold
Tiết diện của một đa tạp Calabi–Yau bậc 5

Sự compact hóa có thể được dùng để xây dựng nên các mô hình trong đó không thời gian hiện ra như thể 4 chiều. Tuy nhiên, không phải mọi cách compact hóa các chiều phụ tạo nên một mô hình mô tả thích hợp các thuộc tính của tự nhiên. Trong một mô hình vật lý hạt có triển vọng, các chiều phụ compact phải có dạng giống một đa tạp Calabi–Yau.[4] Trong lĩnh vực lý thuyết dây, một đa tạp Calabi–Yau là một không gian 6 chiều, đặt tên theo các nhà toán học Eugenio CalabiShing-Tung Yau.[6]

Sau khi các đa tạp Calabi-Yau chứng tỏ khả năng compact hóa các chiều phụ, nhiều nhà vật lý bắt đầu nghiên cứu các đa tạp này. Cuối những năm 1980, Cumrun Vafa và những người khác nhận thấy với một sự compact hóa lý thuyết dây cho trước, không thể tái tạo một đa tạp Calabi-Yau tương ứng duy nhất với nó.[7] Thay vào đó, hai phiên bản lý thuyết dây gọi là lý thuyết dây loại IIAloại IIB có thể compact hóa theo những đa diện Calabi–Yau hoàn toàn khác nhau mà vẫn tạo ra những kết quả vật lý giống hệt.[8] Trong trường hợp này, các đa tạp đó được gọi là đa tạp gương, và mối quan hệ giữa hai lý thuyết được gọi là đối xứng gương.[9]

Quan hệ đối xứng gương là một ví dụ cụ thể của thứ mà các nhà vật lý gọi là tính đối ngẫu. Nói chúng, thuật ngữ đối ngẫu (tiếng Anh: duality) chỉ một tình huống trong đó hai lý thuyết vật lý có vẻ khác nhau thực ra là tương đương theo một cách đặc biệt. Nếu một lý thuyết có thể chuyển hóa khiến nó trông giống lý thuyết kia, hai lý thuyết đó được gọi là cặp đối ngẫu theo phép chuyển đó; nói cách khác, hai lý thuyết là những mô tả toán học khác nhau về cùng một hiện tượng.[10] Những cặp đối ngẫu như thế đóng một vai trò quan trọng trong vật lý hiện đại, đặc biệt là lý thuyết dây.[11]

Bất kể compact hóa Calabi-Yau về lý thuyết dây có cung cấp mọt mô tả chính xác về tự nhiên hay không, sự tôn tại của cặp đối ngẫu gương giữa các lý thuyết dây khác nhau đã dẫn tới những hệ quả toán học đáng chú ý.[12] Các đa tạp Calabi–Yau sử dụng trong lý thuyết dây cũng được toán học thuần túy quan tâm, và đối xứng gương cho phép các nhà toán học giải các bài toán trong lĩnh vựng hình học đại số liệt kê, một nhánh toán học liên quan tới việc đếm số nghiệm của các bài toán hình học. Một bài toán cổ điển của hình học liệt kê là đếm số đường cong tỉ lệ trên một đa tạp Calabi-Yau như minh họa ở trên. Bằng cách áp dụng đối xứng gương, các nhà toán học đã diễn dịch bài toán này thành một một bài toán tương tự cho Calabi-Yau đối xứng gương, đa tạp này tỏ ra dễ tính toán hơn là đa tạp ban đầu.[13]

Đối xứng gương được chứng minh trên địa hạt vật lý,[14] tuy nhiên các nhà toán học thông thường đòi hỏi những phép chứng minh chặt chẽ không cần viện tới trực giác vật lý. Từ quan điểm toán học, phiên bản đối xứng gương mô tả trên đây chỉ là một phỏng đoán hay giả định, nhưng có một phiên bản khác trong ngữ cảnh lý thuyết dây tô pô, một dạng lý thuyết dây đơn giản hóa do Edward Witten đề xuất,[15] đã được chứng minh chặt chẽ về mặt toán học.[16] Theo lý thuyết dây tô pô, đối xứng gương khẳng định rằng hai lý thuyết gọi là mô hình A và mô hình B là tương đương với nhau theo nghĩa tồn tại một cặp đối ngẫu liên hệ giữa chúng.[17] Ngày nay đối xứng gương là một lĩnh vực nghiên cứu sôi động trong toán học, và các nhà toán học đang làm việc để phát triển một nền tảng hiểu biết đầy đủ hơn về đối xứng gương dựa trên trực giác của giới vật lý.[18]

Lịch sử

Nguồn gốc ý tưởng về đối xứng gương có thể lần ngược lại tới những năm giữa thập kỉ 1980 khi người ta nhận thấy một dây lan truyền trong một đường tròn bán kính tương đương về mặt vật lý với một dây lan truyền trong một đường tròn bán kính theo những đơn vị thích hợp.[19] Hiện tượng này gắn bó gần gũi với đối xứng gương và về sau được gọi là nhị nguyên T.[20] Trong một bài bào năm 1985, Philip Candelas, Gary Horowitz, Andrew Strominger, và Edward Witten chỉ ra rằng bằng cách compact hóa lý thuyết dây trên một đa tạp Calabi–Yau, người ta có thể thu được một lý thuyết gần tương tự như mô hình chuẩn của vật lý hạt, thứ cũng hàm chứa một cách nhất quán ý tưởng về siêu đối xứng.[21] Kể từ đó, nhiều nhà vật lý bắt đầu nghiên cứu về compact hóa Calabi–Yau, hi vọng xây dựng những mô hình hiện thực về vật lý hạt dựa trên lý thuyết dây. Cumrun Vafa và những người khác ghi nhận rằng nếu có một mô hình vật lý như vậy, không thể tái tạo một đa tạp Calabi–Yau tương gứng duy nhất; mà là hai đa tạp Calabi–Yau cho cùng một hiện thực vật lý.[22]

Bằng cách nghiên cứu mối quan hệ giữa những đa tạp Calabi-Yau và một số lý thuyết trường bảo giác gọi là các mô hình Gepner, Brian Greene và Ronen Plesser tìm thấy các ví dụ không tầm thường về quan hệ đối xứng gương.[23] Những bằng chứng thêm về quan hệ này đến từ công trình của Philip Candelas, Monika Lynker, và Rolf Schimmrigk, những người khảo sát một lượng lớn đa tạp Calabi–Yau bằng máy tính và thấy rằng chúng thuộc về các cặp đối xứng gương.[24]

Các nhà toán học bắt đầu quan tâm về đối xứng gương khoảng năm 1990 khi các nhà vật lý Philip Candelas, Xenia de la Ossa, Paul Green, và Linda Parks chỉ ra rằng có thể sử dụng đối xứng gương để giải quyết các bài toán trong hình học liệt kê[25] từng không chịu khuất phục giới toán học trong hàng thập kỉ.[26] Những kết quả này được trình bày trong một cuộc hội thảo tại Viên nghiên cứu Các ngành khoa học về toán (MSRI) ở Berkeley, California vào tháng 5 năm 1991. Trong hội thảo này, người ta nhận thấy một trong những con số Candelas tính toán để đếm số đường cong tỉ lệ bất đồng với kết quả các nhà toán học Na Uy Geir EllingsrudStein Arild Strømme sử dụng những kĩ thuật có vẻ chặt chẽ hơn.[27] Nhiều nhà toán học tại hội thảo xem công trình của Candelas chứa sai sót đâu đó vì nó không dựa trên các lập luận toán học vững chắc. Tuy nhiên, sau khi kiểm tra lại lời giải của họ, Ellingsrud và Strømme phát hiện ra một lỗi trong mã máy tính của họ và khi sửa lỗi, họ thu được đáp án phù hợp với đáp án của nhóm Candelas.[28]

Năm 1990, Edward Witten đề xuất lý thuyết dây tô pô,[15] một phiên bản đơn giản hóa của lý thuyết dây, và các nhà vật lý chỉ ra rằng có một phiên bản đối xứng gương cho lý thuyết mới này.[29] Khẳng định này về lý thuyết dây tô pô thường được xem như là định nghĩa của đối xứng gương trong các tài liệu ngành toán.[30] Trong bài phát biểu tại Đại hội Các nhà toán học Quốc tế năm 1994, nhà toán học Maxim Kontsevich trình bày một giả định toán học mới dựa trên ý tưởng đối xứng gương trong lý thuyết dây tô pô. Được gọi là đối xứng gương tương đồng, giả định này chuẩn tắc hóa đối xứng gương như một phép tương đương của hai cấu trúc toán học: phạm trù phát sinh của các bó khớp trên một đa tạp Calabi–Yau và phạm trù Fukaya của đa tạp đối xứng gương với nó.[31]

Cũng trong khoảng năm 1995, Kontsevich phân tích kết quả của Candelas, lập nên một công thức tổng quát cho bài toán đếm đường cong tỉ lệ trên một đa tạp 3 chiều bậc 5, và ông tái lập các kết quả này thành một giả định toán học chính xác.[32] Năm 1996, Alexander Givental công bố một bài báo chứng minh giả định của Kontsevich.[33] Ban đầu, nhiều nhà toán học thấy bài báo khó hiểu va nghi ngờ tính chính xác của nó. Nhưng sau đó, Bong Lian, Kefeng Liu, và Shing-Tung Yau công bố một phép chứng minh độc lập trong một loạt bài báo.[34] Mặc dù có cuộc tranh cãi về chuyện ai là người công bố phép chứng minh đầu tiên, ngày nay những bài báo dduwwocj xem chung là một phép chứng minh toán học của các kết quả ban đầu do các nhà vật lý sử dụng đối xứng gương thu được.[35] Năm 2000, Kentaro Hori và Cumrun Vafa đưa ra một cách chứng minh vật lý nữa, dựa trên nhị nguyên T.[14]

Các nghiên cứu về đối xứng gương tiếp tục tới ngày nay với những phát triển quan trong liên tquan tới dây trên các mặt Riemann có biên.[18] Ngoài ra, đối xứng dây liên quan tới nhiều lĩnh vực nghiên cứu toán học sôi động, như tương ứng McKay, lý thuyết trường lượng tử tô pô, và lý thuyết về các điều kiện ổn định.[36] Cùng lúc, các câu hỏi cơ bản vẫn tiếp tục nổi lên. Chẳng hạn, các nhà toán học vẫn còn chưa hiểu làm cách nào để xây dựng những ví dụ về các cặp Calabi–Yau dù có những tiến bộ nhất định trong mảng này.[37]

Ứng dụng

Hình học liệt kê

Các đường tròn Apollonius: 8 đường tròn tô màu tiếp tuyến với ba đường tròn màu đen.

Nhiều ứng dụng toán học quan trọng của đối xứng gương thuộc về một nhánh của toán học gọi là hình học liệt kê. Trong hình học liệt kê, người ta quan tâm tới việc đếm (liệt kê) số nghiệm của các bài toán hình học, thường bằng các kĩ thuật của hình học đại số. Một trong những bài toán sớm nhất của hình học liệt kê là bài toán Apollonius, mang tên nhà toán học Hy Lạp đề xuất nó vào khoảng năm 200 trước Công nguyên. Apollonius đặt câu hỏi, có bao nhiêu đường tròn trong một mặt phẳng tiếp xúc với ba đường tròn cho trước. Một cách tổng quát, lời giải cho bài toán này là có 8 đường tròn như vậy.[38]

Các bài toán liệt kê trong toán học thường liên quan tới một lớp các đối tượng hình học được gọi là các đa tạp đại số xác định bằng cách triệt tiêu các đa thức. Chẳng hạn, khối Clebsch được định nghĩa là một đa thức bậc 3 với 4 biến (ẩn). Một kết quả nổi tiếng của các nhà toán học thế kỉ 19 Arthur CayleyGeorge Salmon khẳng định rằng có đúng 27 đường thẳng nằm hoàn toàn trong một mặt như vậy.[39]

Tổng quát hóa bài toán này, người ta có thể hỏi có bao nhiêu đường vẽ được trong một đa tạp Calabi-Yau bậc 5, định nghĩa bằng một đa thức bậc 5. Bài toán này được một nhà toán học người Đức thế kỉ 19 Hermann Schubert giải, ông thấy rằng có đúng 2875 đường như vậy. Năm 1986, nhà hình học Sheldon Katz chứng minh rằng số đường cong, như các đường tròn, định nghĩa bằng các đa thức bậc hai và và năm hoàn toàn trong đa tạp bậc 4 là 609 250.[38]

Tính tới năm 1991, hầu hết các bài toán cổ điển của hình học liệt kê đã có lời giải và quan tâm trong lĩnh vực này suy giảm dần. Theo nhà toán học Mark Gross, "Khi các bài toán cũ đã được giải, người ta trở lại kiểm tra các số Schubert bằng các kĩ thuật hiện đại, nhưng nó đã đang trở nên khá là nhạt nhẽo."[40] Lĩnh vực này được tiếp lại sinh lực vào tháng 5 năm 1991 khi các nhà vật lý Philip Candelas, Xenia de la Ossa, Paul Green, và Linda Parks chỉ ra rằng có thể dùng đối xứng gương để đếm số đường cong bậc 3 trong một đa tạp Calabi–Yau bậc 5. Candelas và cộng sự thấy rằng các đa tạp 6 chiều này có thể chứa chính xác 317,206,375 đường cong bậc 3.[40]

Bên cạnh ứng dụng trên, nhóm của Candelas cũng thu được một số các kết quả tổng quát hơn để đếm số đường cong tỉ lệ vượt ra ngoài kết quả của giới toán học đương thời.[41] Mặc dù các phương pháp này vận dụng trực giác vật lý, các nhà toán học đã tiếp bước và chứng minh chặt chẽ một số tiên đoán của đối xứng gương, bao gồm tất cả những tiên đoán liệt kê.[35]

Vật lý lý thuyết

Bên cạnh ứng dụng trong hình học thống kê, đối xứng gương là một công cụ tính toán cơ bản trong lý thuyết dây. Trong lý thuyết dây tô pô mô hình A, các đại lượng vật lý đáng chú ý được biểu diễn dưới dạng vô số các con số gọi là các bất biến Gromov–Witten invariant vốn đặc biệt khó tính toán. Trong mô hình B, các phép tính có thể giản lược về các tích phân cổ điển dễ tính hơn nhiều.[42] Bằng cách áp dụng đối xứng gương, các nhà lý thuyết có thể diễn dịch các tính toán phức tạp trong mô hình A vào dạng tương đương nhưng dễ tính hơn trong mô hình B. Những tính toán này sau đó được dùng để xác định xác suất của cá quá trình vật lý khác nhau trong lý thuyết dây. Đối xứng gương có thể kết hợp với các cặp nhị nguyên khác để biến đổi tính toán trong một lý thuyết sang một lý thuyết khác tương đương, mà nếu thiếu chúng không thể nào thực hiện được.[43]

Ngoài lĩnh vực lý thuyết dây, đối xứng gương cũng tìm thấy ứng dụng trong việc tìm hiểu những khía cảnh của lý thuyết trường lượng tử, hình thức luận mô tả các hạt cơ bản. Chẳng hạn, các lý thuyết đo đạc là một lớp các lý thueets vật lý đối xứng cao xuất hiện trong mô hình chuẩn của vật lý hạt và các phần khác của vật lý lý thuyết. Một vài lý thuyeetss đo đạc không phải là một phần của mô hình chuẩn, nhưng nó quan trọng do một số lý do lý thuyết, nảy sinh rừ những dây lan truyền trong một miền gần suy biến. Đối xứng gương là một công cụ tính toán hữu dụng cho những lý thuyết như thế.[44] Cụ thể, đối xứng gương có thể dùng để tinh toán một lý thuyết đo đạc trong không thời gian 4 chiều mà Nathan Seiberg và Edward Witten nghiên cứu, và cũng quen thuộc trong toán học theo các bất biến Donaldson.[45] Cũng có một phép tổng quát hóa của đối xứng gương gọi là đối xứng gương 3D liên hệ các cặp lý thuyết trường lượng tử trong ba chiều không thời gian.[46]

Các cách tiếp cận

Đối xứng gương tương đồng

Giả thuyết Strominger-Yau-Zaslow

Trích dẫn

Tham khảo

Đọc thêm

Sách phổ biến khoa học

Sách giáo khoa

  1. ^ For an accessible introduction to string theory, see Greene 2000.
  2. ^ Wald 1984, p. 4
  3. ^ Zwiebach 2009, p. 8
  4. ^ a ă Yau and Nadis 2010, Ch. 6
  5. ^ This analogy is used for example in Greene 2000, p. 186
  6. ^ Yau and Nadis 2010, tr. ix
  7. ^ Dixon 1988; Lerche, Vafa, and Warner 1989
  8. ^ Hình dạng của đa diện Calabi-Yau có thể mô tả theo toán học bằng một mảng số gọi là các số Hodge. Các mảng tương ứng để phản chiếu đa tạp Calabi-Yau nhìn chung là khác nhau, phản ánh những hình dạng đa tạp khác nhau, nhưng chúng liên quan với nhau theo một đối xứng nào đó. Xem thêm Yau và Nadis 2010, tr. 160–3.
  9. ^ Aspinwall et al. 2009, tr. 13
  10. ^ Hori et al. 2003, tr. xvi
  11. ^ Các cặp đối ngẫu khác xuất hiện trong lý thuyết dây là đối ngẫu S, đối ngẫu T, và tương ứng AdS/CFT.
  12. ^ Zaslow 2008, tr. 523
  13. ^ Yau and Nadis 2010, tr. 168
  14. ^ a ă Hori and Vafa 2000
  15. ^ a ă Witten 1990
  16. ^ Givental 1996, 1998; Lian, Liu, Yau 1997, 1999, 2000
  17. ^ Zaslow 2008, tr. 531
  18. ^ a ă Hori et al. 2003, tr. xix
  19. ^ Kikkawa và Yamasaki (1984) cùng Sakai và Senda (1986) là những người đầu tiên quan sát thấy điều này.
  20. ^ Strominger, Yau, and Zaslow 1996
  21. ^ Candelas et al. 1985
  22. ^ Điều này được Dixon (1988) và Lerche, Vafa, cùng Warner (1989) quan sát thấy.
  23. ^ Green and Plesser 1990; Yau and Nadis 2010, p. 158
  24. ^ Candelas, Lynker, and Schimmrigk 1990; Yau and Nadis 2010, p. 163
  25. ^ Candelas et al. 1991
  26. ^ Yau and Nadis 2010, p. 165
  27. ^ Yau and Nadis 2010, tr. 169–170
  28. ^ Yau and Nadis 2010, tr. 170
  29. ^ Vafa 1992; Witten 1992
  30. ^ Hori et al. 2003, p. xviii
  31. ^ Kontsevich 1995a
  32. ^ Kontsevich 1995b
  33. ^ Givental 1996, 1998
  34. ^ Lian, Liu, Yau 1997, 1999a, 1999b, 2000
  35. ^ a ă Yau and Nadis 2010, tr. 172
  36. ^ Aspinwall et al. 2009, tr. vii
  37. ^ Zaslow 2008, tr. 537
  38. ^ a ă Yau and Nadis 2010, tr. 166
  39. ^ Yau and Nadis 2010, tr. 167
  40. ^ a ă Yau and Nadis 2010, tr. 169
  41. ^ Yau and Nadis 2010, tr. 171
  42. ^ Zaslow 2008, pp. 533–4
  43. ^ Zaslow 2008, sec. 10
  44. ^ Hori et al. 2003, p. 677
  45. ^ Hori et al. 2003, p. 679
  46. ^ Intriligator and Seiberg 1996